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IBRAHIM HOTEIT, ANEESH SUBRAMANIAN, BRUCE CORNUELLE 

1. LONG-TERM GOALS 

The long-term scientific objective is to develop fully nonlinear Bayesian filters that gen- 
eralize the optimality of ensemble Kalman filter methods to nonlinear systems and can be 
suitable for large dimensional data assimilation problems. The new filters are expected 
to perform better than the ensemble Kalman filter (EnKF) methods with comparable 
implementation cost. The filters will be used for realistic ocean analysis and prediction 
problems. 

2. OBJECTIVES 

Our goal is to explore new directions that would allow the implementation of the non- 
linear Bayesian filtering theory with highly nonlinear systems at reasonable computational 
cost. We aim at developing, implementing and testing new nonlinear filters with realistic 
ocean data assimilation problems in mind. Simple nonlinear dynamical models will be first 
considered to better understand the behavior of these new filters and assess their efficiency 
compared to existing EnKF methods. 

3. APPROACH 

The solution of the nonlinear data assimilation problem can be determined from the 
nonlinear Bayesian filter. The filter provides the conditional probability distribution func- 
tion (pdf) of the system state given all available measurements. Knowledge of the state 
pdf allows determining different estimates of the system state, as the minimum variance 
estimate. The optimal nonlinear filter recursively operates as a succession of a correction 
(or analysis) step at measurement times to correct the state (predictive) pdf using the 
Bayes' rule, and a prediction step to propagate the state (analysis) pdf to the time of the 
next available observation. Despite its simple algorithm, the numerical implementation of 
the optimal nonlinear filter can be computationally prohibitive, even for systems with very 
few dimensions. 

The particle filter (PF) is a discrete approximation of the nonlinear Bayesian filter and 
is based on point-mass representation (mixture of Dirac distributions), called particles, of 
the state pdf. In this filter, the particles are integrated forward with the numerical model 
to propagate the state predictive pdf in time, and their assigned weights are updated 
every time new observations are available. In practice, the PF suffers from the degeneracy 
phenomenon where most weights become concentrated on very few particles and hence 

i 

20110804189 



2 IBRAHIM HOTKIT, ANEESH SUBRAMANIAN, BRUCE CORNUELI-E 

only a tiny fraction of the ensemble contributes to the average, causing very often the 
divergence of the filter. The use of more particles helps alleviating this problem over short 
time periods only, and the most efficient way to get around it is resampling. Besides being 
computationally demanding, resampling introduces Monte Carlo fluctuations which can 
degrade the filter's performance. Additionally, even with resampling, a very large number 
of particles is still required to accurately describe the continuous pdf of the system state, 
a necessary condition to ensure a good behavior of the filter. This makes brute-force 
implementation of the PF problematic with computationally demanding ocean models. 

The Kalman filter (KF) provides the minimum variance solution of the data assimilation 
problem only when the system is linear and the statistics of the system errors are Gaussian. 
The Ensemble Kalman filter (EnKF) combines good properties of the PF and the linear 
Kalman filter. More precisely, it has the same nonlinear prediction step as the PF, but. 
retains the ''linearity aspect" of the Kalman filter in the analysis in that it applies the 
Kalman correction step to each particle. This means that an EnKF only updates the 
first two moments of the particles ensemble, and is thus semi-optimal for non-Gaussian 
(nonlinear) systems. Despite being "semi-optimal", many recent studies found that the 
EnKF is more robust than the PF when small-size ensembles are used because the Kahnan- 
type correction of the particles reduces the risk of ensemble degeneracy by pulling the 
particles toward the true state of the system. 

We propose to use mixture of Gaussian distributions as discrete representation of the 
pdf of the system state in the nonlinear Bayesian filter. A local linearization about each 
particle would then lead to a Kalman-type correction step for each particle complementing 
the usual particle-type correction. The resulting filter, referred to as Particle Kalman filter 
(PKF) basically runs a weighted ensemble of KFs. As in the EnKF, the Kalman-type 
correction step attenuates the degeneracy of the ensemble, which would allow the filter to 
efficiently operate with small-size ensembles. The PKF is computationally prohibitive for 
realistic oceanic data assimilation problems. Approaches to alleviate the computational 
burden of the PKF will be proposed and tested. The basic idea is to represent the pdf of 
the system state given the observations by mixture of Gaussian distributions with low-rank 
covariance matrices to derive fully nonlinear low-rank filters suitable for realistic ocean data 
assimilation problems. 

4. WORK COMPLETED 

An approach to use the optimal nonlinear filtering theory was developed for data as- 
similation into realistic ocean models. Different low-rank Gaussian filters were proposed 
and implemented, and tested with the strongly nonlinear Lorenz-96 model. It was further 
found that this approach sets a theoretical framework for the stochastic and determin- 
istic ensemble Kalman filters. More precisely, the ensemble Kalman filter (EnKF) and 
the square-root ensemble Kalman filters (SR-EnKFs) can be derived as simplified variants 
from this approach. The EnKF integrates a simplified form of the PKF state pdf while the 
square-root filters are Gaussian-based filters. Numerical applications were performed to 
study the filter's behavior and evaluate their performances. The new filters were evaluated 
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with than the standard ensemble Kalman filters (the stochastic ensemble Kalman filter - 
EnKF, and the deterministic ensemble transform Kalman filter - ETKF). It was found that 
these new nonlinear filters work more efficiently with strongly nonlinear models providing 
more accurate estimates of the system states. These results were recently submitted for 
publication in Monthly Weather Review. 

We also recently investigated the Lorenz-86 model to compare the performance of the 
ensemble Kalman Filter (EnKF) and the nonlinear filters. This model admits a chaotic 
vortical mode coupled to a comparatively fast gravity wave mode. The goal was to evaluate 
the performances of linear and nonlinear filters with different systems modes. To further 
assess the efficiency of the nonlinear analysis step in enhancing the dynamical balance of 
the filters solution, identical twin assimilation experiments were designed such that the true 
state is balanced, but the observational errors project onto all degrees of freedom, including 
the fast modes. It was found that EnKFs and nonlinear filters capture the variables in 
the slow manifold well since, once the variables are attracted towards the slow manifold, 
they stay there. Nonlinear filter captures slaved modes much better, implying the more 
robustness of nonlinear filters in handling nonlinear jumps in dependent variables. This 
also suggests that the solution of the nonlinear filters respects the dynamical balance of 
the system more. A paper discussing these results is under preparation. 

5. RESULTS 

New nonlinear filtering algorithms were developed and are currently being tested. Nu- 
merical results suggest that nonlinear filters behave better than the ensemble Kalman filter 
methods with strongly nonlinear systems. They also seem to respect the dynamical balance 
of the system state more resulting in more stable predictions. 



IBRAHIM HOTEIT, ANEESH SUBRAMANIAN, BRUCE CORNUELLE 

0 

i 1 1 

4 4 
•«>PSenKF 1 
*P£1KF    j 

<? *'<» 

4 
*'* A *t 

38 
^s 
V 

3 6 '•*. 

3 4 

is 

3 i               ' 

>- - -" * * 

1 1 

-0 
* - 

FIGURE 1. Minimum rms errors emm (over 20 experiments) of the sto- 
chastic based ensemble particle filter (PSEnKF) and deterministic ensemble 
transform based particle Kalman filter (PETKF) with the Lorenz 96-model 
and nonlinear observations and a fixed number of 10 members in each en- 
semble filter as functions of the number of Gaussian pdjk in the mixture. Not 
that for the EnKF and ETKF correspond to the case with one component 
in the Gaussian mixture used to approximate the full pdf of the slat. 

6. IMPACT/APPLICATIONS 

This study led to new sequential data assimilation schemes that generalizes the optimal- 
ity of the ensemble Kalman filter to nonlinear systems. The new filters can be in principle 
used to assimilate data to highly nonlinear ocean analysis and prediction problems. More 
work is needed in this direction. 

7. TRANSITIONS 

Theory and algorithms can be made available to Navy scientists. 
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FIGURE 2. Slaved Relations Mode: Every variable at all time steps is ob- 
served. In these runs we can see that sudden jumps in the fast variable 
(Variable 4) are not captured well with the EnKF but the nonlinear filters 
tend to capture these sudden transitions better implying that nonlinear 
filters show a better skill in estimating nonlinear regime shifts better. 
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FIGURE 3. Slaved Relations Mode: First and third variable at every 8th 
time step is observed.In these runs we can see that sudden jumps in the fast 
variable (Variable 4) are not captured well with the EnKF but the nonlinears 
tend to capture these sudden transitions better implying that nonlinear 
analysis step is needed to obtain better skill in estimating nonlinear regime 
shifts better even with lesser number of observations. 


